Exercise 4

Solve the differential equation.

$$
y^{\prime \prime}+8 y^{\prime}+16 y=0
$$

Solution

This is a linear homogeneous ODE with constant coefficients, so it has solutions of the form $y=e^{r x}$.

$$
y=e^{r x} \quad \rightarrow \quad y^{\prime}=r e^{r x} \quad \rightarrow \quad y^{\prime \prime}=r^{2} e^{r x}
$$

Substitute these formulas into the ODE.

$$
r^{2} e^{r x}+8\left(r e^{r x}\right)+16\left(e^{r x}\right)=0
$$

Divide both sides by $e^{r x}$.

$$
r^{2}+8 r+16=0
$$

Solve for r.

$$
\begin{gathered}
(r+4)^{2}=0 \\
r=\{-4\}
\end{gathered}
$$

Two solutions to the ODE are $e^{-4 x}$ and $x e^{-4 x}$. According to the principle of superposition, the general solution to the ODE is a linear combination of these two.

$$
y(x)=C_{1} e^{-4 x}+C_{2} x e^{-4 x}
$$

C_{1} and C_{2} are arbitrary constants.

